- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Calvanese, Enrico (1)
-
Gu, Yangnan (1)
-
Spoel, ed., Steven (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The inner nuclear membrane (INM) hosts a unique set of membrane proteins that play essential roles in various aspects of the nuclear function. However, overaccumulation or malfunction of INM protein has been associated with a range of rare genetic diseases; therefore, maintaining the homeostasis and integrity of INM proteins by active removal of aberrantly accumulated proteins and replacing defective molecules through proteolysis is of critical importance. Within the last decade, it has been shown that INM proteins are degraded in yeasts by a process very similar to endoplasmic reticulum-associated degradation (ERAD), which is accomplished by retrotranslocation of membrane substrates followed by proteasome-dependent proteolysis, and this process was named inner nuclear membrane-associated degradation (INMAD). INMAD is distinguished from ERAD by specific INM-localized E3 ubiquitin ligases and proteolysis regulators. While much is yet to be determined about the INMAD pathway in yeasts, virtually no knowledge of it exists for higher eukaryotes, and only very recently have several critical regulators that participate in INM protein degradation been discovered in plants. Here, we review key molecular components of the INMAD pathway and draw parallels between the yeast and plant system to discuss promising directions in the future study of the plant INMAD process.more » « less
An official website of the United States government
